Ressourcenzentrum
Austausch und Teilen fördern Wachstum,
Zusammenarbeit führt zu gemeinsamer Entwicklung.

Konstruktionsmerkmale des Gehäuses für das Immersionsflüssigkeits-gekühlte Energiespeicher-Pack
2024.11.05 jack.wang@walmate.com

Die Immersionsflüssigkeits-gekühlte Energiespeichertechnologie ist eine fortschrittliche Batteriekühlungsmethode. Sie nutzt die effiziente Wärmeleitfähigkeit von Flüssigkeiten, um die Batterien schnell, direkt und umfassend zu kühlen und den Betrieb in einer sicheren und effizienten Umgebung zu gewährleisten.Das Grundprinzip besteht darin, die Energiespeicherbatterien vollständig in eine isolierende, ungiftige und wärmeleitende Flüssigkeit einzutauchen.Diese Technologie ermöglicht den direkten Wärmeaustausch zwischen der Flüssigkeit und den Batterien, wodurch die bei Lade- und Entladevorgängen entstehende Wärme schnell aufgenommen und an ein externes Kühlsystem abgegeben wird.

图片17-GR.png

Schematische Darstellung des Prinzips eines einzelnen Immersions-Flüssigkeitskühlsystems für Energiespeicher


Der Immersions-Flüssigkeitskühlungs-Energiespeicher-Pack dient als Träger und als Schutzkomponente für die Batteriezellen. Seine Hauptfunktionen bestehen in der Unterstützung des Batterie-Packs und des Kühlmittels, der Sicherheit sowie dem Wärmetransfer.Daher müssen bei der Gestaltung des Gehäuses Faktoren wie Abdichtung, Kühleffizienz, Sicherheit, Materialauswahl und Herstellungsverfahren umfassend berücksichtigt werden, um einen effizienten, sicheren und zuverlässigen Betrieb des Systems zu gewährleisten.Das Design der Gehäusestruktur bildet die Grundlage des gesamten Flüssigkeitskühlsystems.


1-Gleichmäßige Belastung

Der untere Kasten des flüssigkeitsgekühlten Energiespeichers besteht aus einer Bodenplatte und Seitenplatten. Die Bodenplatte dient als Grundträger, und die Seitenplatten sind um die Bodenplatte herum befestigt, die zusammen den Hauptrahmen des Kastens bilden. Die Größe des Kastens sollte unter Berücksichtigung der Gesamtanforderungen und Lastbedingungen des Flüssigkeitskühlsystems angepasst werden. Bei der Konstruktion größerer Kästen können interne Trennwände oder Stützstrukturen sinnvoll eingerichtet werden, um den großen Raum in mehrere kleine Räume zu unterteilen. Kraftbereich, um die gleichmäßige Tragfähigkeit zu verbessern. In der internen Struktur kann die lokale Tragfähigkeit durch Hinzufügen von Stützrippen und Verstärkungsrippen verbessert werden, und im Inneren des Kastens kann auch eine Lastverteilungsstruktur eingerichtet werden, um die Last an jeder Ecke auszugleichen.

Um die Auswirkungen plastischer Verformungen auf die gleichmäßige Belastung zu verringern, können unterschiedliche Bearbeitungsoberflächen auf eine Ebene ausgelegt werden, wodurch die Anzahl der Anpassungen an der Werkzeugmaschine verringert und Verformungen aufgrund von Höhenunterschieden vermieden werden können. Außerdem kann die Breite oder Höhe des Gehäuses erhöht werden, um die Last zu verteilen und Verformungen zu reduzieren.

Darüber hinaus erhöht das integrierte Design des Flüssigkeitskühlkanals und der Bodenplatte des Gehäuses, das durch Rührreibschweißen oder Laserschweißen hergestellt wird, die strukturelle Festigkeit des gesamten Systems erheblich.

图片18.png

Schematische Darstellung der unteren Gehäusestruktur des Einzel-Immersions-Flüssigkeitskühlungs-Energiespeicher-Packs


2-Wärmeübertragungsdesign

Die Wärmeleitfähigkeit ist ein wichtiger Aspekt der immersiven Flüssigkeitskühltechnologie. Das Ziel des Designs besteht darin, sicherzustellen, dass die Batterie in einer Hochtemperaturumgebung effektiv gekühlt wird, um ihre Leistung und Sicherheit zu erhalten.

Die Materialien des Gehäuses sollten eine hohe Wärmeleitfähigkeit aufweisen. Übliche Materialien sind Aluminiumlegierungen, Kupfer und aluminium-basierte Verbundwerkstoffe.Das Gehäusedesign muss auch die Auswirkungen von Umwelttemperaturänderungen berücksichtigen. Eine angemessene Dicke der Isolierung kann die Innentemperatur des Gehäuses in einem relativ konstanten Bereich halten und damit die Gesamteffizienz des Systems erhöhen.

Das strukturelle Design des Gehäuses hat direkten Einfluss auf die Wärmeleitfähigkeit. Eine durchdachte Anordnung der Flüssigkeitskanäle sorgt für einen reibungslosen Fluss der Flüssigkeit im Gehäuse und maximiert die Kontaktfläche, was die Wärmeleitfähigkeit des Gehäuses verbessert.Innerhalb des Gehäuses können mehrere Kanäle eingerichtet werden, um die Zirkulationswege des Kühlmittels zu erhöhen und damit die Kühlleistung zu verbessern.

图片19.png

    (linke Seite)Option 1: Vollständig eingetaucht + Einzelkomponente + Plattenwärmetauscher   

(Rechte Seite)Option 2: Vollständig eingetaucht + Einzelkomponente + Gehäusewärmetauscher


Das Flüssigkeitskühlsystem umfasst Kühlmittel, Wärmeleitstrukturen, Flüssigkeitskühlschläuche und Stützstrukturen.

In Option 1 kann die gleiche oder verschiedene Kühlmittel in die Kanäle der Kühlplatte und in den Gehäusehohlraum gefüllt werden, wobei beide Hohlräume versiegelt und voneinander getrennt sind.Im Gehäusehohlraum wird das Batteriemodul vollständig in das Kühlmittel eingetaucht, wodurch eine vollständige Berührung entsteht. Das Kühlmittel bleibt statisch und nutzt die gute Wärmeleitfähigkeit der Flüssigkeit, um die Wärme von der Oberfläche der Batterie zu absorbieren und die Temperaturerhöhung zu senken.In der Kühlplatte wird das Kühlmittel in den Einspeiseverteilers verteilt und strömt parallel in die Kühlplatte, um dann im Auslassverteiler zusammenzukommen und abzufließen. Diese Konfiguration ist hauptsächlich verantwortlich für den Abtransport von Wärme und die Gewährleistung der Kühlung.

In Option 2 strömt das kühle Kühlmittel von unten oder von der Seite ein, während das warme Kühlmittel von oben austritt. Das Kühlmittel zirkuliert innerhalb des Batteriepacks, wodurch die Wärme gleichmäßig verteilt wird, die Gesamteffizienz des Kühlsystems erhöht und die Temperaturkonsistenz der Zelle oder des Batteriepakets aufrechterhalten wird.

Um die Kühlwirkung weiter zu verbessern, können verschiedene Optimierungsmaßnahmen ergriffen werden, wie die Optimierung des Flüssigkeitsflusses und der Zirkulationsmethoden, die Auswahl von Kühlmitteln mit hoher Wärmekapazität und die Verbesserung der Temperaturverteilung der Flüssigkeit.Diese Maßnahmen können die Ansammlung von Wärme und den Energieverlust reduzieren und sicherstellen, dass die Batterie effizient gekühlt betrieben wird.




3-Dichtungsdesign

Für die Flüssigkeitskühlpack-Box wird ein vollständiges Dichtungsdesign unter Verwendung fortschrittlicher Dichtmaterialien und -strukturen entwickelt. Das Dichtungsdesign muss nicht nur die Luftdichtheit, sondern auch die Dichtheit des Flüssigkeitsmediums berücksichtigen, um sicherzustellen, dass die Batteriezellen in alle Richtungen keine Leckagen aufweisen.

Das Design sollte je nach spezifischen Anwendungsanforderungen die geeignete Dichtungsform und -gestalt auswählen. Zudem sind Faktoren wie die Leckagefreiheit der Dichtungen, Abriebfestigkeit, Kompatibilität mit dem Medium und der Temperatur sowie geringe Reibung zu berücksichtigen. Basierend auf den detaillierten Spezifikationen sollten geeignete Dichtungsarten und -materialien ausgewählt werden.

Darüber hinaus hat die Wahl des Schweißverfahrens einen erheblichen Einfluss auf die Dichtungsleistung. Die Auswahl der geeigneten Schweißmethode für unterschiedliche Materialien und Dicken kann die Schweißnahtqualität erheblich verbessern, um die Gesamtheit der Systemstärke und Dichtheit zu gewährleisten.

图片20.png

Abbildung des Fertigprodukts des unteren Gehäuses des Einzel-Eintauch-Flüssigkeitskühl-Packs


Wir werden regelmäßig Informationen und Technologien zu Wärmedesign und Leichtbau aktualisieren und mit Ihnen teilen. Vielen Dank für Ihr Interesse an Walmate.